

New unexpected CMS result in pp collisions at 7 TeV

V. L. Korotkikh

DEHEP and DTHEP SINP MSU meeting, Oct 13, 2010

Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC

JHEP 1009:091,2010 Sep 2010. e-Print: arXiv:1009.4122 [hep-ex] <u>CMS Collaboration,</u>

From MSU:

Moscow State University, Moscow, Russia

E. Boos, M. Dubinin¹⁷, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

1. G. Tonneli, G. Roland, Two reports at CERN seminar Sep.21.2010

2. Wei Li, CMS General Weekly Meeting, Sep. 1 and Oct 4, 2010

Инициаторы и

главные исполнители: Wei Li, George Stephans¹ and Jeremy Callner, Yuting Bai, Dave Hofman²

¹ Massachusetts Institute of Technology ² University of Illinois, Chicago

Trigger and Associated particles

Первое наблюдение Ridje-like структуры в p-р столкновениях

Signal is observed at large difference $|\Delta \eta| < 4.8$, large multiplicity N > 90 and at medium particle transverse momentum 1 < pT < 3 GeV/c.

Correlations in Heavy Ion Collisions

Collective flow phenomena:

Most convincing evidence of "perfect liquid" at RHIC!

Correlations in Heavy Ion Collisions at RHIC

Long-range "Ridge"-like structure in $\Delta\eta$

"Flow subtraction"

Multiplicity vs |η| for 0.9 TeV and energy 0.9, 2.36, 7.0 TeV

High multiplicity events

Dedicated trigger needed to record highest multiplicities

Triggering on High Multiplicity

CERN Seminar September 21 2010

Statistics for high multiplicity events enhanced by O(10³). Total datasets corresponding to 980nb⁻¹

Long-range near-side angular correlations

Min bias events in pp collisions at 0.9, 2.36 and 7 TeV

For minimum bias events at different energies in p_T inclusive distributions

 p_{T} -inclusive two-particle angular correlations in Minimum Bias collisions

CMS

Обсуждаемые и принятые интерпретации

Long-range near-side angular correlations

G. Roland's talk

Correlation in pp event generators at high multiplicity

No ridge effect in these models (with the tunes used)

Results for intermediate p_T:1-3GeV/c

Minimum Bias no cut on multiplicity

High multiplicity data set and N>110

New "ridge-like" structure extending to large $\Delta \eta$ at $\Delta \phi \sim 0$

Multiplicity- and p_T - dependence

Multiplicity- and p_T - dependence

Multiplicity- and p_T - dependence

Signal yield is increasing with multiplicity at p_T= 1-3 GeV/c <code> и 2.0<|\Delta\eta|<4.8</code> .

Physics of the ridge - Jet

Au-Au

Three-particle correlations in HI from STAR:

Physics of the ridge - Jet

р-р

Ridge region shows no structure in η_1 vs η_2

Physics of the ridge - Jet

Multi- jet events

More work needed to explore connection to jet correlations

≽...

Systematic uncertainties

- >No sensibility to beam background.
- ≻No sensibility to "pile up".
- >Independence to beam centre distance.
- **≻**Independence to charge particle combination (+,-), (+,+),(-,-
- >Signal is repeated in 3 different codes.
- >Independence to HLT Trigger Bias.
- **>**Signal is present in events with $\pi 0$ B ECAL (supercluster).

Summary of main systematics for the new analysis

Sources	Syst. on ridge yield
Pileup	15%
HLT efficiency	4-5%
Tracking	1-2%
ZYAM	0.04

Cross-checkings can't kill Ridge !

Другие свойства HI

M. Daugherity for the STAR Collaboration, QM2008

data - fit (except same-side peak)

The transition occurs quickly

Другие свойства HI

Ridge Independence to trigger momentum

Ridge momentm spectr is soft and very close to min bias

Другие свойства HI

Anomal ratio barion/meson, larger then in p+p and e+e- in four times

Deformation away-side peak and two hump appearence

Интерпретация

Physics of the ridge

Jet-Jet or Jet-proton remnant:

- Many questions about the role of jets
- \bullet Should predict ridge is always aligned with jet in φ

Hydrodynamic flow:

- Original motivation of the analysis
- Possible although degree of thermalization is hard to evaluate

Glasma tube from BNL group

- Glasma tube+radial flow -> ridge in HI
- Intrinsic ridge in pp even without radial flow
- \bullet Similar $p_{_{T}}$ dependence as the data

Wei Li, Oct 4, 2010, CMS QCD meeting

Комментарии в SLAC arXiv

- Interpretations are going fast:
- QGM <u>http://arxiv.org/abs/1009.4635</u> (Shuryak)
- CGC <u>http://arxiv.org/abs/1009.5295</u> (Dumitru et al)
- QGM <u>http://arxiv.org/abs/1009.5229</u> (Troshin and Turyin)
- QGM -- http://arxiv.org/abs/1010.0405 (Bozek)
- QCD -- http://arxiv.org/abs/1010.0918 (Dremin, Kim)
- **QGM** -- http://arxiv.org/abs/1010.0964(Tannenbaum, Weiner)

Основные свойства Ridge-эффекта, впервые наблюдаемого в p-p столкновениях

- •Signal is small, but it is clear at $\sqrt{s} = 7$ TeV in events with high multiplicity N > 90.
- •It is seen at large rapidaty difference , 2.0<| $\Delta\eta|$ <4.8 .
- •It is seen at intermediate region $p_T = 1-3$ GeV/c.
- •Signal is increasing with multiplicity.
- •It is absent in jet events with ET(jet) > 20 GeV and in multi-jet events with $N_{iet} > 4$

•Its properties coincides with Ridge in Au-Au at $\sqrt{s_{NN}}=200$ GeV (RHIC results) and can be checked on other distributions on CMS.

ЛАВ-ОЭФВЭ-МГУ group/ Corr-flow subgroup

V.L. Korotkikh, I.P. Lokhtin, S.V.Petrushanko, A.M Snigirev (MSU), M.Yu. Azarkin (LPI-FIAN), J.Velkovska, M.Issah,S. Tuo (Vand.Un.), V.Zhukova (Un.Kansas) Wei Li (MIT), J.Callner, Y.Bai, D.Hofman (Un.III.Ch.)

Backup slides

Min bias event in pp collisions

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV. By CMS Collaboration Phys.Rev.Lett.105:022002,2010.

- Exponential (low-p_T)
- Power-law (high-p_T)

Systematic uncertainties

Pileup effects are suppressed due to excellent resolution Track counting done with σ_{dz} , σ_{dxy} of O(100 μ m)

Change in pileup fraction by factor 2-4 has almost no effect on ridge signal

No indication of effect that would fake ridge signal (irrespective of magnitude)

Sources	Syst. on ridge yield	
Pileup	15%	
HLT efficiency	4-5%	
Tracking	1-2%	Conservative estimates
ZYAM	0.0025	ridge associated yield

No dependence on radial distance from center of I

Track - ECAL Supercluster (mostly π^0) correlations

No obvious bias due to HLT trigger, statistics limited!

Systematic uncertainties

Ridge is seen with three independent analysis codes

Pixel-only tracks 3 hits in pixel detector

"HighPurity" tracks Pixel + Silicon Strip tracker

Ridge is seen using min bias trigger + offline selection

First observation of a ridge-like structure in pp collisions

The new feature is clearly seen for large rapidity differences $2 < |\Delta\eta| < 4.8$ in events with N ~ 90 or higher. The enhancement is most evident in the intermediate p_T range $1 < p_T < 3$ GeV/c.

This is the first observation of such a long-range, near-side feature in twoparticle correlation functions in pp or p-pbar collisions.

It is a small effect, however, very interesting. Although there are also differences, it resembles a similar feature observed at RHIC that was interpreted as being due to the hot and dense matter formed in relativistic heavy ion collisions.

Similar "ridge" in high multiplicity pp

Results for inclusive p_T

Minimum Bias no cut on multiplicity

High multiplicity data set and N > 110

Back-to-back jet correlations enhanced in high multiplicity sample.

Разложение в ряд Фурье

