Centrality dependence of the elliptic flow correlation at low and high p_T

Коротких В.Л, Эйюбова Г.Х

1

16 ноября 2020 г. Семинар ЛСВ ОЭФВЭ

Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV

CMS, Phys. Lett. B776(2017)195

- 1. v2 при больших и малых $\mathbf{p}_{_{\mathrm{T}}}$ сильно коррелируют.
- 2. Их значения увеличиваются линейно с ростом интервалов центральностей от (0-5%) до (50-60%) как $V_2^{HighpT} = k_2 V_2^{LowpT}$

Наклон k_2 одинаков для v2(SP) (v2{4}) меняется от 0.55 до 0.4 при переходе к большим $p_{_{\rm T}}$

 3. При этом для центральностей 50-60% значения v2 ≈ 0.03 для больших рТ. Подчеркнём, что для отобранных интервалов р_т параметр потока v₂ увеличивается с ростом периферичности. (слева направо точки соответствуют 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50 и 50-60%) При высоких pt вводятся понятия потока:

- v_2^{JQ} образованного за счет эффекта jet quenching
- V₂^{JQ_off} потока частиц струй, нескоррелированных с плоскостью реакции (раньше обозначалось как непотоковые корреляции)

с соответствующими углами:

- Ψ₂^{JQ} Quenching plane, совпадающий, либо близкий к углу плоскости реакции
- Ψ₂^{JQ_off} угол потока частиц струи со случайным направлением

Поток v₂ в HYDJET++, PbPb, √s=5.02 TeV

	А	В	С
$\boldsymbol{p}_t^{\text{min}}$	10	8.5	10
Y_{I}^{max}	4.5	3.2	3.5
τ _f	13.2	12.7	13.2
R _f	13.9	13.7	13.9

Для статьи выбран набор параметров "В".

В области 0< p_т <5 , 13 < p_т < 35 GeV/с описание хорошее. В области 5 < p_т < 13 GeV/с описание потока неудовлетворительное, как с помощью значений v_2^{RP} , так и кумулянтами v_2 {2}, v_2 {4}.

Hard vs soft component in HYDJET++

При высоких р_т поток жесткой компоненты увеличивается за счет эффекта подавления струй.

Поток v₃ в HYDJET++, PbPb, √s=5.02 TeV

Модель занижает значения v₃ в сравнении с CMS.

Методы v2{2}, v2{4}, v2{SP}

При низких p_т v₂{4}< v₂<v₂{2}, что обусловлено вкладом флуктуаций эксцентриситета в начальном состоянии. При высоких p_т присутствует вклад корреляций от потока частиц в струях.

Корреляции между v₂ при высоких и низких р_т

Анизотропия частиц $V_2^{\ RP}$ относительно плоскости реакции $\Psi_2^{\ c}$ с учетом погашения струй описывает эксперимент для центральных и полуцентральных столкновений, но резко уменьшается для C>30%, так как плотность среды уменьшается и струи претерпевают меньшее погашение Для кумулянта v_2 {4} наблюдаются выполаживание.

При высоких р_т анизотропия частиц V₂^{RP} сравнима с нулем при выключении эфеекта погашения струй.

Вклад потока частиц в струях в v_2 {4} и v_2 {SP} растет с периферичностью столкновений.

Вопросы к результатам

- Модель занижает эффект jet-quenching для периферических столкновений?
- Вклад потоковых корреляций от струй в данных больше, чем в модели?

Почему поток частиц от сруй v₂{4} и v₂{SP}
зависит от центральности?

Рисунки статьи

Рис.2

1. Корреляции между v₂ большими и малыми p_т в модели обусловлены тем, что как для жесткой, так и для мягкой компоненты модели гармоника v₂ определяется в основном начальным эксцентриситетом (центральностью столкновения).

2. Наблюдаемое значение второй гармоники определяется конкуренцией анизотропией относительно плоскости реакции за счет погашения струй, либо анизотропией относительно оси струи в зависимости от того чья величина больше:

а). При малых центральностях — это анизотропия за счет погашения струй. В этом случае v₂^{RP} =v₂{4} и угол плоскости события Ψn совпадает с углом плоскости реакции Ψn^{RP}.

 b). При больших центральностях (> 30%) наблюдаемое значение второго кумулянта v₂{4} выдает анизотропию относительно оси струи Ψn^{jet}. Угол плоскости события Ψn в этом случае совпадает с углом струи Ψn^{JQ-off}.

3. При изменении центральности столкновения мы переходим от анизотропии за счёт погашения струй (малые центральности) к анизотропии относительно оси струи (большие центральности)

Вопросы к соавторам

1. Из переписки заинтересованность проявили и могут быть соавторами статьи помимо Г.Х. Эйюбовой и В.Л. Коротких также

И.П. Лохтин, А.М. Снигирёв, С.В. Петрушанко, Е.Е. Забродин.

Подтвердите, пожалуйста, согласие и форму участия

2. Желательно, чтобы работу над текстом продолжил А.М. Снигирёв. Его формулировки выводов уже включены в проект статьи.

3. Для какого журнала подойдет статья?

Спасибо

Дополнительные слайды

Cumulants:

$$\begin{split} \langle \langle 2 \rangle \rangle &= \left\langle \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle \right\rangle, \\ \langle \langle 4 \rangle \rangle &= \left\langle \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle \right\rangle, \\ c_n\{4\} &= \langle \langle 4 \rangle \rangle - 2 \left\langle \langle 2 \rangle \right\rangle^2, \end{split} \qquad d_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \left\langle \langle 2 \rangle \right\rangle \langle \langle 2 \rangle \rangle, \qquad v_n\{4\}(p_T, \eta) = -d_n\{4\}(-c_n\{4\})^{-3/4}, \end{split}$$

• Scalar Product

$$q_{n} = \frac{\sum\limits_{i=1}^{M} w_{i} \mathrm{e}^{in\phi_{i}}}{W}, \qquad v_{n} \left\{ \mathrm{SP} \right\} \equiv \frac{\langle q_{n}q_{nA}^{*} \rangle}{\sqrt{\frac{\langle q_{nA}q_{nB}^{*} \rangle \langle q_{nA}q_{nC}^{*} \rangle}{\langle q_{nB}q_{nC}^{*} \rangle}}. \qquad \left\langle q_{n\alpha}q_{n\beta}^{*} \right\rangle = \mathrm{Re} \left[\frac{\sum\limits_{i=1}^{N_{\mathrm{evt}}} W_{\alpha i} W_{\beta i} q_{n\alpha i} q_{n\beta i}^{*}}{\sum\limits_{i=1}^{N_{\mathrm{evt}}} W_{\alpha i} W_{\beta i}} \right],$$

A, B subevents: $3 < |\eta| < 5$, C: $|\eta| < 0.75$ Particles of interest: $|\eta| < 1$

STEG генератор: простое азимутальное распределение с заданным параметром v2.

Проверка методов

Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at $\Box s_{NN} = 5.02$ TeV

Figure 2: Comparison between the v_2 results from the SP and the 4-, 6-, and 8-particle cumulant methods, as a function of p_T , in six centrality ranges from 0–5% to 50–60%. The vertical bars (shaded boxes) represent the statistical (systematic) uncertainties.

S Phys. Lett. B 776 (2017) 195

Кумулянт v2{4}увеличивается с ростом периферичности до высоких pT = 40 ГэВ/с

Measurement of the azimuthal anisotropy of charged particles produced in $\Box s_{NN} = 5.02 \text{ TeV} \text{ATLAS} [http://arxiv.org/abs/1808.03951]$

Figure 6: The v_n values obtained with the 2PC method as a function of p_T^b for $0.5 < p_T^a < 5$ GeV. Each paner represents a different centrality interval. The vertical error bars indicate statistical uncertainties. The shaded banc indicate systematic uncertainties.

Селюженков_И_В_диссертация_ALICE, 2020

Рисунок 3.8 — Зависимости v_2 , v_3 и v_4 от p_T в столкновениях Pb–Pb при энергиях $\sqrt{s_{NN}} = 2.76$ ТэВ для разных классов центральности. Пунктирная линия представляет расчеты модели WHDG для v_2 нейтральных пионов, экстраполированных для энергий столкновений на LHC.

Guilbaud AppTalk_HIN-15-014, 19.05.2016

v₂{SP} at 5.02 TeV compared with v₂{EP} at 2.76 TeV and CUJET calculations

A.Buzzatti, M. Gyulassy, https://arxiv.org/abs/1207.6020v3 An overview of the CUJET model: Jet Flavor Tomography applied at RHIC and LHC